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a b s t r a c t 

We consider the two-level uncapacitated facility location problem with single assignment constraints 

(TUFLP-S), an extension of the uncapacitated facility location problem. We present six mixed-integer 

programming models for the TUFLP-S based on reformulation techniques and on the relaxation of the 

integrality of some of the variables associated with location decisions. We compare the models by carry- 

ing out extensive computational experiments on large, hard, artificial instances, as well as on instances 

derived from an industrial application in freight transportation. 
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1. Introduction 

In this paper, we study and compare several formulations for

the two-level uncapacitated facility location problem with single

assignment constraints (TUFLP-S), an extension of the uncapaci-

tated facility location problem (UFLP) ( Krarup and Pruzan, 1983 ).

The UFLP consists in selecting a set of depots from potential

locations in order to minimize an objective function that includes

fixed costs associated with each depot and transportation costs

from any depot to each customer. In the two-level uncapacitated

facility location problem (TUFLP), the single set of locations is

substituted with two tiers of locations (depots and satellites), and

the path to each customer must begin at a depot and transit by

a satellite. The objective function includes fixed costs associated

with the depots and the satellites, fixed costs for establishing

connections between depots and satellites, and transportation

costs from any depot to each customer, i.e., each path of the form

depot-satellite-customer has a corresponding transportation cost.

The TUFLP-S imposes the additional restriction that each satellite

can be connected to at most one depot. These single assignment

constraints appear in a number of applications, most notably in

transportation ( Tragantalerngsak et al., 1997 ) and telecommuni-

cations ( Chardaire et al., 1999 ). Note also that, for a large class of
∗ Corresponding author. 
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UFLP instances for which the single assignment constraints are

ot explicitly enforced, there is an optimal solution that satisfies

hese constraints, due to the structure of the objective function

 Chardaire et al., 1999 ). 

There is a wide body of literature devoted to multi-level facility

ocation problems ( Klose and Drexl, 2005; Melo et al., 2006;

ahin and Süral, 2007; Zanjirani Farahani et al., 2014 ), which

eneralize the TUFLP-S. Most papers are dedicated to two-level

roblems, but some address the general multi-level case, e.g.,

ratica et al. (2014) and Ortiz-Astorquiza et al. (2015) . There

re two types of mathematical programming models: arc-based

 Kratica et al., 2014; Marín, 2006; Pirkul and Jayaraman, 1996;

998 ) and path-based ( Barros and Labbé, 1994; Gao and Robinson,

992; Kaufman et al., 1977; Ro and Tcha, 1984 ). The compari-

on between relaxations of these different models is performed

oth from theoretical and experimental perspectives ( Bloemhof-

uwaard et al., 1994; 1996; Chardaire et al., 1999; Marín and Pele-

rin, 1999 ). For two-level capacitated/uncapacitated facility loca-

ion problems, exact methods are mainly based on polyhedral ap-

roaches or on Lagrangian relaxation. Some authors ( Aardal et al.,

996 ; Baïou and Barahona, 2014; Chardaire et al., 1999; Landete

nd Marín, 2009 ) have shown how to strengthen the models by

dding valid inequalities and facets. Lagrangian relaxations of the

odels are also considered in several papers ( Barros, 1995; Gen-

ron et al., 2016; Marín and Pelegrin, 1999; Pirkul and Jayaraman,

996; 1998 ), exploiting well-known structures in Lagrangian sub-

roblems, such as UFLPs ( Gendron et al., 2016 ) or knapsack prob-

ems ( Marín and Pelegrin, 1999; Pirkul and Jayaraman, 1996; 1998 ).

http://dx.doi.org/10.1016/j.cor.2017.02.020
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Fig. 1. Example of TUFLP instance. 
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When single assignment constraints are imposed, the literature

ecomes scarce. To the best of our knowledge, single assign-

ent constraints were first introduced in Tragantalerngsak et al.

1997) for a two-level capacitated facility location problem. The

uthors describe a Lagrangian relaxation-based branch-and-bound

lgorithm for solving the problem. We could identify only three

eferences addressing the TUFLP-S: Chardaire et al. (1999) proposes

 strengthened formulation, as well as a heuristic method com-

ining Lagrangian relaxation and simulated annealing; Gendron

t al. (2015) presents a multi-layer variable neighbourhood search

euristic; Gendron et al. (2016) develops a Lagrangian relaxation

ethod. These three papers focus on the development of effi-

ient solution methods, while the present paper focuses on the

odelling of the problem. 

The contribution of this paper is two-fold. First, we introduce

ix mixed-integer programming (MIP) models for the TUFLP-S

ased on reformulation techniques and on the relaxation of the

ntegrality of some of the variables associated with location

ecisions. One of these formulations was previously considered

n Gendron et al. (2016) to derive a Lagrangian relaxation for

he TUFLP-S. Second, we compare the models by solving a large

umber of various instances with a state-of-the-art MIP solver.

he results show that, whenever fixed costs at the depots (at the

atellites) are significant, it is beneficial to keep the integrality

f the corresponding binary variables, but to relax the integrality

f the binary variables associated with the satellites (with the

epots). In our experiments, poor results are obtained by the

eformulation that minimizes the number of binary variables by

elaxing the integrality of the two types of location variables. 

The paper is organized as follows. In Section 2 , we present a

eneral formulation for the TUFLP ( Barros and Labbé, 1994 ) and

e adapt this model to derive an initial MIP formulation for the

UFLP-S. We then propose five additional MIP formulations and

heoretically compare the LP relaxations of these models. The

ormulations are then compared experimentally in Section 3 . Last,

ome conclusions are drawn in Section 4 . 

. Formulations for the TUFLP-S 

To define the TUFLP, we introduce the following notation: I

s the set of potential depot locations, J is the set of potential

atellite locations, and K is the set of customers. Fixed costs and

ransportation costs are defined as follows: f i , g j and h ij are the

onnegative fixed costs for, respectively, each depot i ∈ I , each

atellite j ∈ J and each pair of depot-satellite ( i, j ) ∈ I × J; c ijk is

he transportation cost on each path ( i, j, k ) ∈ I × J × K from a

epot i to a satellite j to a customer k . 

xample 1. Fig. 1 shows a small instance of the TUFLP with

 I| = | K| = 5 and | J| = 6 . Each depot i ∈ I has a fixed cost f i = 1

nd each satellite j ∈ J has a fixed cost g j = 1 , except satellite 0,

hich has a fixed cost g 0 = ε, with 0 < ε < 1. We assume that

he fixed cost for any pair ( i, j ) ∈ I × J is h i j = 0 . The instance is

onstructed in such a way that any arc ( j, k ) ∈ J × K displayed in
ig. 1 belongs to a single path ( i, j, k ) ∈ I × J × K . Hence, we use

lain, dotted and dashed lines to easily identify the paths in I × J

K that are shown in Fig. 1 . For instance, path (1, 1, 1) is shown

with a plain line) in Fig. 1 , but not path (1, 1, 2), since the arc

1, 2) between satellite 1 and customer 2 belongs to path (3, 1, 2)

hown (with a dotted line) in Fig. 1 . Any path ( i, j, k ) ∈ I × J ×
 displayed in Fig. 1 has a cost c i jk = 0 , while any other path in

 × J × K is assumed to have an arbitrarily large cost. This TUFLP

nstance is used throughout the text to illustrate the main results. 

Barros and Labbé (1994) propose to solve the TUFLP with a MIP

ormulation that uses the following sets of binary variables: 

y i = 

{
1 , if depot i is open, 

0 , otherwise, 
∀ i ∈ I, 

z j = 

{
1 , if satellite j is open, 

0 , otherwise, 
∀ j ∈ J, 

t i j = 

{
1 , if depot i is connected to satellite j , 

0 , otherwise, 
∀ (i, j) ∈ I × J, 

 i jk = 

{
1 , if customer k is served through pair (i, j) , 

0 , otherwise, 

∀ (i, j, k ) ∈ I × J × K. 

The MIP model, which we denote ( G ), is then written as

ollows: 

min 

,z,t,x 

∑ 

i ∈ I 
f i y i + 

∑ 

j∈ J 
g j z j + 

∑ 

(i, j) ∈ I×J 

h i j t i j + 

∑ 

(i, j,k ) ∈ I×J×K 

c i jk x i jk , (1)

ubject to ∑ 

i, j) ∈ I×J 

x i jk = 1 , ∀ k ∈ K, (2) 

 i jk ≤ t i j , ∀ (i, j, k ) ∈ I × J × K, (3) 

 

j∈ J 
x i jk ≤ y i , ∀ (i, k ) ∈ I × K, (4) 

 

i ∈ I 
x i jk ≤ z j , ∀ ( j, k ) ∈ J × K, (5) 

 ≤ x i jk ≤ 1 , ∀ (i, j, k ) ∈ I × J × K, (6) 

 i ∈ { 0 , 1 } , ∀ i ∈ I, (7) 

 j ∈ { 0 , 1 } , ∀ j ∈ J, (8) 

 i j ∈ { 0 , 1 } , ∀ (i, j) ∈ I × J. (9) 

Constraints (2) guarantee the satisfaction of the demand for

ach customer. Constraints (3) to (5) ensure that fixed costs are

ncurred for the use of, respectively, depot-satellite pairs, depots

nd satellites. Since there are no capacity constraints, there always

xists an optimal solution to ( G ) where the demand for a single

ustomer is not split across multiple paths, and the integrality

equirements on variables x ijk can be relaxed. 

In most papers devoted to two-level uncapacitated facility

ocation problems, a particular case is considered by setting the

osts on the arcs between depots and satellites to zero ( h i j = 0

or any ( i, j ) ∈ I × J ). For this special case, solution approaches

 Aardal et al., 1996 ; Barros, 1998; Landete and Marín, 2009 ) are
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based on the MIP formulation that eliminates variables t ij and

constraints (3) from ( G ). This does not affect the LP relaxation

bounds, since no cost is incurred when variables t ij are set to one. 

We now address a variant of the TUFLP that forces each satel-

lite to be connected to at most one depot. For some instances,

solutions to ( G ) will naturally satisfy these single assignment

constraints. Here, we explicitly consider these constraints to derive

MIP formulations that model the TUFLP-S and apply to instances

where the single assignment requirements are either satisfied

implicitly or need to be enforced. 

Formulation ( G ) includes variables t ij to determine whether arc

( i, j ) ∈ I × J is selected or not. We define the following constraints

to enforce each satellite to be connected to at most one depot: ∑ 

i ∈ I 
t i j ≤ 1 , ∀ j ∈ J. (10)

By adding these constraints to ( G ) we obtain the weak formulation

( W ) for the TUFLP-S, which is then defined by the objective

(1) subject to constraints (2) to (10) . 

Example 1 (continued). We use the example of Fig. 1 to show

that an optimal solution to the TUFLP might not satisfy the single

assignment constraints (10) , i.e., there are instances such that

v ( G ) < v ( W ). Indeed, an optimal solution to ( G ) consolidates the

demands of customers 3 and 4 at satellite 0, taking advantage of

the small fixed cost g 0 = ε. In such a solution, only depots 3 and 4

need to be opened, along with satellites 0, 1, 3 and 5, allowing to

satisfy all customer demands through paths (3, 3, 1), (3, 1, 2), (4, 0,

3), (3, 0, 4) and (4, 5, 5), thus giving an optimal value v (G ) = 5 + ε.

Clearly, this solution violates constraints (10) , since two ingoing

arcs are used at satellite 0, i.e., t 40 + t 30 = 2 > 1 . When constraints

(10) are added, we can derive several optimal solutions of value

v (W ) = 7 , for instance by opening depots 1 and 5, along with all

satellites, except 0, and by using paths (1, 1, 1), (1, 2, 2), (1, 3, 3),

(5, 5, 4) and (5, 4, 5). Note that any solution that opens satellite

0 would incur a cost of v (W ) = 7 + ε and would not be optimal.

Thus, for this instance, we have v (G ) = 5 + ε < 7 = v (W ) . 

The literature on the TUFLP often considers the special case

where the transportation costs on the paths are separable by

arc, i.e., c i jk = d k a i j + b jk for any ( i, j, k ) ∈ I × J × K . For TUFLP

instances that satisfy this property, in addition to h i j = 0 for any

( i, j ) ∈ I × J , it is easy to show that ( G ) and ( W ) are equivalent

( Gendron et al., 2016 ). We can go one step further and show that

the LP relaxations of the two models give the same bound. For

any model F , we denote by v ( F ) and F its optimal value and its LP

relaxation, respectively. 

Proposition 1. For any TUFLP instance such that h i j = 0 , ∀ ( i, j )

∈ I × J and c i jk = d k a i j + b jk , ∀ ( i, j, k ) ∈ I × J × K, we have

v ( G ) = v ( W ) ≤ v (W ) = v (G ) . 

Proof. Since ( G ) is a relaxation of ( W ) , we have v ( G ) ≤ v ( W ) . 

To show that v ( G ) ≥ v ( W ) , consider an optimal solution to

( G ) that violates constraints (10) , i.e., 
∑ 

i ∈ I t i j ′ > 1 for some j ′ ∈
J . This implies that there is at least one pair of arcs ( i ′ , j ′ ) and

( i ′ ′ , j ′ ) such that t i ′ j ′ > 0 and t i ′′ j ′ > 0 . We assume without loss of

generality that a i ′ j ′ ≤ a i ′′ j ′ . Because t i ′′ j ′ > 0 , there exists L ⊆ K, L

	 = ∅ such that x i ′′ j ′ l > 0 for l ∈ L and x i ′′ j ′ k = 0 for k ∈ K �L . If we

move the total flow d l x i ′′ j ′ l on path ( i ′ ′ , j ′ , l ) to path ( i ′ , j ′ , l ) for

all l ∈ L , we obtain another feasible solution where we can set

 i ′′ j ′ = 0 . The cost of this solution is necessarily the same as that

of the original optimal solution, i.e., we have constructed another

optimal solution. By repeating this argument a finite number of

times, we eventually end up with an optimal solution to ( G ) that

satisfies constraints (10) . Hence, v ( G ) ≥ v ( W ) . 

The proof of the equation v (W ) = v (G ) follows the same

argument. �
Example 1 (continued). It is clear that the instance of

ig. 1 does not satisfy the conditions of Proposition 1 , since, for

nstance, c 111 = d 1 a 11 + b 11 = 0 and c 211 = d 1 a 21 + b 11 is arbitrar-

ly large imply a 21 is arbitrarily large, but this contradicts c 213 =
 3 a 21 + b 13 = 0 . For this instance, we have seen above that v (G ) =
 + ε < 7 = v (W ) . It is interesting to note, however, that v ( G ) =
 ( W ) for this instance. Indeed, an optimal solution to the two

odels splits the flow equally on all 0-cost paths going to each

ustomer, i.e., x i jk = 1 / 3 , for each ( i, j, k ) ∈ I × J × K such that

 i jk = 0 , k = 1 , 2 , 3 , and x i jk = 1 / 2 , for each ( i, j, k ) ∈ I × J ×
 such that c i jk = 0 , k = 4 , 5 . Correspondingly, we have t i j = 1 / 3 ,

hen j = 1 , 2 , 3 , and t i j = 1 / 2 , when j = 0 , 4 , 5 , for each ( i, j )

 I × J shown in Fig. 1 . As a result, the location variables as-

ume the following values: y i = 1 / 3 , i = 1 , 2 , y i = 1 / 2 , i = 3 , 4 , 5 ,

 j = 1 / 3 , j = 1 , 2 , 3 and z j = 1 / 2 , j = 0 , 4 , 5 , which yields an opti-

al value v ( G ) = v ( W ) = 4 + 1 / 6 + ε/ 2 . Thus, for the TUFLP solved

ith model ( G ), the integrality gap is at least 20% (if ε → 0) and

t most 28.6% (if ε → 1), while for the TUFLP-S solved with model

 , the integrality gap varies between 50% (if ε → 1) and 68%

if ε → 0). 

To improve model ( W ), we propose a reformulation based on

 simple property of feasible solutions. For a given satellite j ∈
 , at most one variable t ij can be equal to 1 due to constraints

10) . Moreover, z j is equal to 1 if and only if t i ′ j is equal to 1 for

ome i ′ , since fixed costs g j are nonnegative. In other words, either

 j = t i j = 0 , for any i ∈ I , or there exists a single i ′ ∈ I such that

 i ′ j = z j = 1 and t i j = 0 , for any i ∈ I, i 	 = i ′ . On the basis of these

bservations, we can add to ( W ) the following valid inequalities: 

 

i ∈ I 
t i j = z j , ∀ j ∈ J. (11)

e can then remove constraints (10) , which become redundant,

s well as constraints (5) , which are implied by (3) and (11) . We

hus obtain the strong formulation ( S ), defined by the objective

1) subject to constraints (2) to (4), (6) to (9) and (11) . 

roposition 2. v ( W ) ≤ v ( S ) and the inequality can be strict. 

roof. When considering the LP relaxations of ( W ) and ( S ), it is

asy to see that (3) and (11) imply (5) and (10) , given that z j ≤ 1, j

 J . Hence, ( W ) is a relaxation of ( S ) and v ( W ) ≤ v ( S ) . Example 1

see below) provides an instance for which the inequality can be

trict. �

Example 1 (continued). The optimal solution to W given above

oes not satisfy constraints (11) , since, for any j ∈ J , except 4, we

ave �i ∈ I t ij > z j . An optimal solution to model S does not use ei-

her depot 1 or depot 2 (either y 1 = 0 or y 2 = 0 ) and splits the flow

qually on all remaining 0-cost paths going to each customer. For

nstance, if y 1 = 0 , then an optimal solution satisfies x i jk = 1 / 2 , for

ach ( i, j, k ) ∈ I × J × K such that c i jk = 0 , i 	 = 0, with the remain-

ng variables assuming the following values: y i = 1 / 2 , i = 2 , 3 , 4 , 5 ,

 j = 1 / 2 , j = 2 , 4 , z j = 1 , j = 0 , 1 , 3 , 5 and t i j = 1 / 2 for each ( i, j ) ∈
 I �{1}) × J shown in Fig. 1 . The optimal value is then v ( S ) = 6 + ε,

orresponding to an integrality gap that varies between 0% (if ε →
) and 16.7% (if ε → 0), which is significantly better than the LP re-

axation bound obtained by model W , i.e., v ( W ) = 4 + 1 / 6 + ε/ 2 <

 + ε = v ( S ) . 
With the objective of reducing the number of binary variables,

 reformulation of ( S ) can be obtained by projecting out variables

 j using equalities (11) and by reintroducing constraints (10) . This

ields a simpler formulation, denoted ( S P ): 

in 

y,t,x 

∑ 

i ∈ I 
f i y i + 

∑ 

(i, j) ∈ I×J 

(g j + h i j ) t i j + 

∑ 

(i, j,k ) ∈ I×J×K 

c i jk x i jk (12)
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Table 1 

Characteristics of the four industrial TUFLP-S instance 

sets. 

Instances | I | | J | | K | | A | | P | 

Tiny 23 80 175 134 3366 

Small 47 160 351 592 28,496 

Medium 70 240 526 1236 92,554 

Full 93 320 701 2250 222,308 
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c  
ubject to (2) to (4), (6) to (10) . As can be seen from the objective

12) , constraints (11) imply that we can attribute the fixed costs g j 
o every variable t ij . 

In any of the three TUFLP-S formulations introduced so far,

 W ), ( S ) and ( S P ), the integrality requirements on variables y i can

e relaxed after introducing the following valid inequalities: 

 i j ≤ y i , ∀ (i, j) ∈ I × J. (13)

nly non-negativity constraints on variables y i have then to be

mposed. Adding constraints (13) yields a corresponding model

ith more constraints, but fewer binary variables than the initial

odel. Thus, we can derive models ( W 

C ), ( S C ) and ( S C 
P 
) from

ormulations ( W ), ( S ) and ( S P ), respectively. Each of these models

s obtained from the corresponding one by adding constraints

13) and by relaxing the integrality of variables y i . Note that one

f these models, ( S C 
P 
) , has been used in Gendron et al. (2016) to

erive a Lagrangian relaxation method. 

To summarize, we have introduced six formulations for the

UFLP-S for which the LP relaxations can be compared with the

ollowing result: 

roposition 3. v ( W ) = v ( W 

C ) ≤ v ( S ) = v ( S P ) = v ( S C ) = v ( S C 
P 
) . 

roof. To show that, for any formulation ( F ) , we have

 ( F ) = v ( F C ) , we have to show that constraints (13) are redundant

or ( F ) . The argument is based on constraints (3), (4) and the non-

egativity of h ij . Indeed, for any ( i, j ) ∈ I × J, h ij ≥ 0 implies there

s an optimal solution to ( F ) such that t i j = max k ∈ K { x i jk } ≡ x i jk ∗ ,
y constraints (3) . Thus, t i j = x i jk ∗ ≤ ∑ 

j ′ ∈ J x i j ′ k ∗ ≤ y i , by constraints

4) , and constraints (13) are redundant for ( F ) . 

Finally, the equality v ( S ) = v ( S P ) is trivial and the inequality

 ( W ) ≤ v ( S ) was shown in Proposition 2 . �

The four formulations ( S ), ( S P ), ( S C ) and ( S C 
P 
) all provide the

ame LP relaxation bound. They differ in the binary variables

hat remain: ( S ) preserves all the decision variables from ( W ),

 S P ) eliminates variables z j , while ( S C ) and ( S C 
P 
) both relax the

ntegrality of variables y i . 

The performance of a state-of-the-art MIP software tool when

olving these models may thus vary: is it better to mimic the

nitial formulation ( W ) with ( S ), to minimize the number of binary

ariables with ( S C 
P 
), or to strike a compromise between these two

xtremes with ( S P ) or ( S C )? In addition, it is not clear how a

tate-of-the-art MIP software tool would handle branching with

ach of these equivalent formulations. In particular, is it better to

rioritize branching on variables y i or on variables z j , or to impose

o branching priority on the different types of binary variables?

ur computational experiments, to be presented next, address

hese issues, but we first look at the effect of different branching

riorities on the instance of Fig. 1 . 

Example 1 (continued). As shown above, an optimal solution

o S is given by y 1 = 0 , y i = 1 / 2 , i = 2 , 3 , 4 , 5 , z j = 1 / 2 , j = 2 , 4 ,

 j = 1 , j = 0 , 1 , 3 , 5 , t i j = 1 / 2 for each ( i, j ) ∈ ( I �{1}) × J shown

n Fig. 1 and x i jk = 1 / 2 , for each ( i, j, k ) ∈ I × J × K such that

 i jk = 0 , i 	 = 0. If we give priority to branching on variables z j ,

e would add constraints z j = 0 and z j = 1 for j = 2 or j = 4 .

hatever the variable chosen, z 2 or z 4 , the two branches quickly

ield an optimal solution. Indeed, the branch where z j = 0 gives

n LP relaxation integer solution of value 7 + ε, while the branch

here z j = 1 provides an LP relaxation integer solution of value

, and this true whether j = 2 or j = 4 . Thus, when variables z j 
re given priority, only two nodes are needed to prove optimality,

rrespective of the choice of the branching variable. By contrast, if

riority is given to variables y i , three cases might happen: 

1) y 5 is selected, in which case the branch y 5 = 0 gives an LP

elaxation integer solution of value 7 + ε and the branch y = 1
5 
rovides an LP relaxation integer solution of value 7, which implies

hat only two nodes are needed to prove optimality; 

2) y 3 or y 4 is selected, in which case the branch y i = 0 produces

n LP relaxation integer solution of value 7, but the branch y i = 1

ives an LP relaxation fractional solution of value 6 + 1 / 2 + ε
the optimal solution to S with the branching variable equal to

, instead of 1/2), which implies that, if ε < 1/2, more than two

odes are needed before proving optimality; 

3) y 2 is selected, in which case the branch y 2 = 1 provides an

P relaxation integer solution of value 7, but the branch y 2 = 0

ives an LP relaxation fractional solution of value 6 + ε (the opti-

al solution to S where y 2 = 0 and all other variables y i assume

alue 1/2), which implies that, irrespective of the value of ε, more

han two nodes are needed before proving optimality. 

. Computational results 

To compare the computational efficiency of the six formu-

ations, we conducted computational experiments using CPLEX

2.6.1 on a 2.5 GHz Intel Xeon E5-2609 with 128 GB RAM. The

estbed includes 430 instances of two types. Instances of the first

ype are derived from industrial data. They result from subprob-

ems obtained when solving a Lagrangian decomposition for a

ore complex distribution network design problem ( Gendron and

emet, 2009 ). Their integrality gaps at the root are small, but

hey are of large size. Instances of the second type are artificial

arge-size TUFLP-S instances with single assignment generated in

endron et al. (2016) . They present large integrality gaps at the

oot node. These difficult instances allow us to study the branching

trategies for the different formulations. 

More specifically, we report two types of computational results.

irst, we give gaps and CPU times when solving the LP relaxation

nd when invoking CPLEX at the root node only. Then, we consider

ifferent branching priorities by branching first on either variables

 i or z j to determine which branching scheme is more relevant

or each type of instance and for each model. We report the total

umber of nodes, the optimality gap and the CPU time obtained

fter proving optimality or attaining the CPU limit of 10 hours. 

.1. Testbed 

The testbed includes two types of instances. Instances of the

rst type (“I”) are divided into four sets of 100 instances derived

rom a location-distribution problem faced by a retail company

 Gendron and Semet, 2009 ). Each set corresponds to an industrial

nstance from which 100 TUFLP-S instances inherit their network

tructure. We list their characteristics in Table 1 , where columns

 to 4 indicate the number of depots, satellites and customers,

espectively, and columns 5 and 6 show the number of depot-

atellite arcs in set A ⊆ I × J , and the number of paths in set P ⊆ I

J × K , respectively. Instances in set “Tiny” are roughly one fourth

he size of instances in set “Full”, those in “Small” half the size,

nd those in “Medium” three quarters. These TUFLP-S instances

re defined on realistic graphs, but present a cost structure that

akes them particularly difficult: depots incur the same large fixed

ost, while satellites and depot–satellite arcs incur none. Moreover,
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Table 2 

Gaps and runtimes when computing LP relaxations. 

Type Instances ( W ) ( W 

C ) ( S ) ( S P ) ( S C ) (S C P ) 

I Tiny Gap (%) 0.01 0.01 0.01 0.01 0.01 0.01 

Time (s) 0 0 0 0 0 0 

Small Gap (%) 0.43 0.43 0.43 0.43 0.43 0.43 

Time (s) 0 1 0 0 1 0 

Medium Gap (%) 0.15 0.15 0.15 0.15 0.15 0.15 

Time (s) 4 4 4 4 6 4 

Full Gap (%) 0.22 0.22 0.22 0.22 0.22 0.22 

Time (s) 28 24 23 25 37 21 

L LargeA Gap (%) 20.42 20.42 19.14 19.14 19.14 19.14 

Time (s) 1 1 1 1 1 1 

LargeB Gap (%) 27.43 27.43 24.29 24.29 24.29 24.29 

Time (s) 1 1 2 1 2 1 

LargeC Gap (%) 24.52 24.52 21.70 21.70 21.70 21.70 

Time (s) 1 1 3 2 2 2 

Table 3 

Gaps and runtimes at the root node. 

Type Instances ( W ) ( W 

C ) ( S ) ( S P ) ( S C ) (S C P ) 

I Tiny Gap (%) 0.00 0.00 0.00 0.00 0.00 0.01 

Time (s) 0 0 0 0 0 0 

Small Gap (%) 0.42 0.41 0.41 0.42 0.40 0.41 

Time (s) 2 2 2 2 3 2 

Medium Gap (%) 0.15 0.15 0.15 0.15 0.15 0.15 

Time (s) 13 10 13 10 15 8 

Full Gap (%) 0.22 0.22 0.22 0.22 0.22 0.22 

Time (s) 51 43 51 43 60 36 

L LargeA Gap (%) 20.42 20.33 18.80 18.95 18.78 18.97 

Time (s) 2 2 2 2 2 2 

LargeB Gap (%) 27.43 27.36 24.13 24.20 24.13 24.18 

Time (s) 2 3 3 2 3 2 

LargeC Gap (%) 24.52 24.47 21.34 21.54 21.32 21.55 

Time (s) 3 3 4 3 4 3 
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transportation costs vary greatly depending on the locations on the

path. Consequently, the single assignment constraints are not re-

dundant and the general model ( G ) is not valid for these instances.

The second type (“L”) of instances were introduced in

Gendron et al. (2016) . A set of 30 two-level instances were

obtained based on the generator proposed in Kochetov and Iva-

nenko (2005) to obtain UFLP instances with large integrality gaps.

Such UFLP instances, including 150 facilities and 150 customers,

are divided into three classes, A, B and C. For instances of class

A, all depots are connected to an equal number of customers,

while for instances of class B, all customers can be served by

an equal number of depots. Class C instances are such that both

customers and depots are connected to the same number of

the other type of nodes. We used the procedure suggested in

Landete and Marín (2009) to transform these UFLP instances into

TUFLP instances. For each UFLP instance, the procedure consists in

dividing the original arcs into two sets: the arcs associated to 75

depot-customer pairs become satellite-customer arcs in the TUFLP

instance, while the arcs associated with the remaining 75 depot-

customer pairs become depot-satellite arcs in the TUFLP instance.

We slightly modified the procedure proposed in Landete and

Marín (2009) to guarantee that the resulting TUFLP instances are

feasible, given the sparsity of the original UFLP instances. Thus, we

obtained three sets of instances (“LargeA”, “LargeB” and “LargeC”)

with | I| = | J| = | K| = 75 . We defined costs in such a way that the

single assignment constraints have to be imposed explicitly. Thus,

these Large Gap instances cannot be solved with formulation ( G ). 

3.2. Bounds at the root node 

Tables 2 and 3 report the average gaps (with respect to the

optimal value) and CPU times in seconds when computing the
P relaxations and the root node, respectively, of the six models

resented in Section 2 . 

For instances of type “I”, the LP gaps are identical, irrespec-

ive of the model considered. This is not surprising, given that

hese instances do not have fixed costs associated with satellite

ocation variables and with depot-satellite assignment variables.

or instances of type “L”, the LP gaps are equal for models ( W )

nd ( W 

C ), and are dominated by those obtained with models

 S ), ( S P ), ( S C ) and (S C 
P 
) , which are identical. This is in accordance

ith Proposition 3 . As expected, LP gaps are small (less than 1%)

or instances of type “I” while they are large (around 20%) for

nstances of type “L”. We observe no difference from one model

o the other in terms of computational times. All CPU times are

egligible (less than 10 seconds) with the exception of those

ecorded for the full-sized industrial instances. 

When we consider the gap at the root node, the LP gaps are im-

roved marginally even if CPLEX is invoked with its preprocessing

nd cutting methods. The LP gap is closed for most tiny industrial

nstances. For the remaining instances, the gap is reduced by less

han 0.5%. Considering model ( W ), no significant impact of such

ethods is observed at the root node. Last, it is noteworthy that

he CPU times increase significantly, even if they remain small. 

.3. Branch-and-bound performance 

For a fair comparison of the different formulations, we provide

s initial upper bounds to CPLEX the optimal values and deacti-

ate the primal heuristics. We study the performance of CPLEX

ccording to two branching strategies. The choice of the branch-

ng variables is done in priority either among the y i variables or

mong the z j variables. Tables 4 and 5 report for priority branching

n y i variables and z j variables, respectively, the average number
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Table 4 

Branch-and-bound performance: priority branching on y i variables. 

Type Instances ( W ) ( W 

C ) ( S ) ( S P ) ( S C ) (S C P ) 

I Tiny Nodes 1 1 1 1 1 1 

Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 

Time (s) 0 0 0 0 0 0 

Small Nodes 35 63 33 34 70 62 

Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 

Time (s) 3 4 3 3 5 4 

Medium Nodes 16 32 16 15 32 32 

Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 

Time (s) 19 22 18 16 30 20 

Full Nodes 43 114 41 39 143 117 

Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 

Time (s) 134 269 131 116 399 233 

L LargeA Nodes 88,812 4 94 9 64,036 70,626 4472 39,482 

Gap (%) 0.01 0.00 0.18 0.01 0.00 0.01 

Time (s) 5860 675 7210 5857 898 3706 

LargeB Nodes 193,390 6516 137,558 145,892 4940 50,610 

Gap (%) 0.46 0.00 0.88 0.54 0.00 0.01 

Time (s) 14,474 1196 16,788 5857 1198 3706 

LargeC Nodes 150,798 3938 102,193 104,740 3215 45,483 

Gap (%) 0.96 0.00 1.21 1.08 0.00 0.01 

Time (s) 14,051 854 15,777 13,304 1039 5815 

Table 5 

Branch-and-bound performance: priority branching on z j variables. 

Type Instances ( W ) ( W 

C ) ( S ) ( S P ) ( S C ) (S C P ) 

I Tiny Nodes 1 1 1 1 2 1 

Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00 

Time (s) 0 0 0 0 0 0 

Small Nodes 43 63 49 70 574,323 62 

Gap (%) 0.00 0.00 0.00 0.00 0.03 0.00 

Time (s) 4 4 4 5 9738 4 

Medium Nodes 35 32 179 32 3220 32 

Gap (%) 0.00 0.00 0.00 0.00 0.01 0.00 

Time (s) 25 25 66 30 438 20 

Full Nodes 64 114 977 66 5273 117 

Gap (%) 0.00 0.00 0.01 0.00 0.01 0.00 

Time (s) 182 278 1356 168 5273 233 

L LargeA Nodes 3704 2708 2728 77,033 1772 39,482 

Gap (%) 0.00 0.00 0.00 0.33 0.00 0.01 

Time (s) 484 477 625 8116 365 3706 

LargeB Nodes 5297 5592 3893 152,767 2141 50,610 

Gap (%) 0.00 0.00 0.00 0.89 0.00 0.01 

Time (s) 853 1072 1123 17,568 365 3706 

LargeC Nodes 3726 3291 2547 107,810 1533 45,483 

Gap (%) 0.00 0.00 0.00 1.17 0.00 0.01 

Time (s) 755 741 969 15,976 486 5815 
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f nodes in the branch-and-bound tree, the gap (with respect to

he optimal values) and the CPU time in seconds. A CPU time limit

f 36,0 0 0 seconds was set. When y i variables are continuous in

he model solved, i.e., ( W 

C ), ( S C ) and (S C 
P 
) , the results of branching

n priority on y i variables ( Table 4 ) mean that no priority rule is

mposed among all binary variables. Similarly, when z j variables

re not present in the model solved, i.e., ( S P ) and (S C 
P 
) , the results

f Table 5 show no priority rule among the remaining binary

ariables. 

We first comment on the results for the instances of type “I”.

ranching on y i variables reveals itself to be a good option on such

nstances. In Table 4 , models ( W ), ( S ) and ( S P ) require less than

alf the number of nodes, compared with the three other MIP for-

ulations, for which y i variables are continuous and no priority is

mposed among all binary variables. When branching is performed

n priority on z j variables, as shown in Table 5 , model ( S C ) requires

rohibitive computational times, while the best results in terms

f nodes and CPU times are obtained with models ( W ) and ( S P ).

hese results indicate that branching in priority on z j variables is

 poor strategy for these instances. This is easily explained by the
act that, for these instances, there are no costs associated with

hese variables. Overall, it is more efficient to branch in priority

n y i variables for the instances of type “I”, with the best results

btained with model ( S P ), for which z j variables are not present. 

The picture changes completely when instances of type “L” are

olved. Indeed, when branching in priority on y i variables, models

 W ), ( S ), ( S P ) and (S C 
P 
) behave poorly, and the three models for

hich y i variables are binary, ( W ), ( S ) and ( S P ), fail to solve these

nstances to optimality systematically. In Table 4 , the best results

re obtained with the two models for which y i variables are

ontinuous and that include z j variables, i.e., ( W 

C ) and ( S C ). The

esults reported in Table 5 confirm this behaviour: ( S P ) and (S C 
P 
)

equires prohibitive computational times and cannot be solved to

ptimality for all instances, while the formulation leading to the

est performances, both in terms of CPU times and number of

odes, is ( S C ). This is explained by the fact that, when branching

n z j variables, t ij variables can be quickly fixed, due to constraints

11) . For the same reason, model ( S ) also performs well, being

econd after ( S C ), but the latter is superior simply because it does

ot include y i variables. Overall, it is more efficient to branch
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in priority on z j variables for the instances of type “L”, with the

best results obtained with model ( S C ), for which the binary re-

quirements on y i variables are relaxed. Note that, on the instance

of Fig. 1 , we observed in a similar way the superiority of the

branching priority on z j variables over the branching priority on y i 
variables (see the end of Section 2 ). 

It is interesting to note that, for all instances, model (S C 
P 
)

performs relatively poorly, compared with the others. This is ex-

plained by the fact that CPLEX has to branch only on t ij variables,

since y i variables are continuous and z j variables are not present in

formulation (S C 
P 
) . In contrast, branching in priority on y i variables

(for instances of type “I”) or z j variables (for instances of type

“L”) is more efficient, since it can quickly fix t ij variables. In spite

of being dominated by the other models, mostly because of the

branching strategy adopted by CPLEX, model (S C 
P 
) is interesting

and was used as a basis for developing the Lagrangian relaxation

method presented in Gendron et al. (2016) . 

4. Conclusions 

We have compared, both theoretically and experimentally, six

MIP formulations for the TUFLP-S. The models differ first in the

way they define the single assignment constraints: weak models

use the most obvious definition that involves only the depot-

satellite assignment variables t ij , while strong models introduce

a tight connection between variables t ij and the satellite location

variables z j . Using this connection, it is possible to project out the

z j variables, thus obtaining equivalent strong formulations that

contain less binary variables. Furthermore, by adding redundant

linking constraints between variables t ij and the depot location

variables y i , we can relax the integrality of variables y i . By using

these two techniques, i.e., projecting out variables z j (only for the

strong models) and relaxing the integrality of variables y i after

adding linking constraints (both for the strong and weak models),

we have obtained two equivalent weak models, ( W ) and ( W 

C ), and

four equivalent strong models, ( S ), ( S P ), ( S 
C ) and (S C 

P 
) . 

On the industrial instances, which have no fixed costs on satel-

lite location variables and depot-satellite assignment variables,

our computational results show that it is beneficial to branch first

on the y i variables. The model that shows the best performance

on these instances is ( S P ), since it reduces the number of binary

variables compared to ( S ), but keeps the integrality of the most

significant y i variables. The model that shows the worst perfor-

mance on these instances is ( S C ): it relaxes the integrality of the

y i variables, while keeping the (meaningless for these instances)

z j variables in the formulation. On the artificial instances, which

have significant fixed costs on satellite location variables, our

computational results emphasize the benefit of branching first on

the z j variables. The best formulation for these instances is ( S C ),

since it reduces the number of binary variables compared to ( S ),

while also keeping the most significant z j variables in the model.

The worst model for these instances is ( S P ), which projects out the

z j variables, while enforcing the integrality of the less significant

y i variables. For both types of instances, industrial and artificial,

the model that minimizes the number of binary variables, (S C 
P 
) ,

performs poorly. Model ( S ) is a good compromise, as it includes all

types of binary variables. Branching first on the y i variables is the

best approach for industrial instances, but for artificial instances,

it is significantly better to branch on the z j variables. 

These results point in the direction of developing more general

branching priorities that are adapted to the relative importance

of the fixed costs, both for the TUFLP-S, but also for more gen-

eral multi-level facility location problems. Indeed, it would be

interesting to generalize our findings to multi-level facility loca-

tion problems. In particular, we note that, when fixed costs on

intermediate facility locations (here, satellites) are significant, the
roblems appear difficult to solve. Developing efficient decom-

osition methods to handle such difficult problems raises several

heoretical and computational challenges. 
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